Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1335489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510702

RESUMO

Background: Successive observational studies have highlighted low-density lipoprotein cholesterol (LDL-C) as a standalone risk factor for the progression of chronic kidney disease (CKD) to end-stage renal disease. Lowering LDL-C levels significantly reduces the incidence of atherosclerotic events in patients with progressive CKD. Recent research indicates that proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors not only effectively lower LDL-C levels in CKD patients but also exhibit therapeutic potential for autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. However, the role of PCSK9 inhibitors (PCSK9i) in treating CKD beyond lowering LDL-C levels remains uncertain. Therefore, this study employs drug-targeted Mendelian randomization (MR) to investigate the causal impact of PCSK9i on primary glomerular diseases such as IgA nephropathy (IgAN), membranous nephropathy (MN), and nephrotic syndrome (NS). Methods: Single-nucleotide polymorphisms (SNPs) linked to LDL-C were sourced from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Genes situated in proximity to 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and PCSK9 served as proxies for therapeutic inhibition of these targets. The causal link between PCSK9i and the risk of primary glomerular disorders was discovered using drug-target MR studies. The HMGCR inhibitor, a drug target of statins, was utilized for comparative analysis with PCSK9i. Primary outcomes included the risk assessment for IgAN, MN, and NS, using the risk of coronary heart disease as a positive control. Results: The inhibition of PCSK9, as proxied genetically, was found to significantly reduce the risk of IgAN [odds ratio, OR (95% confidence interval, CI) = 0.05 (-1.82 to 1.93), p = 2.10 × 10-3]. Conversely, this inhibition was associated with an increased risk of NS [OR (95% CI) = 1.78 (1.34-2.22), p = 0.01]. Similarly, HMGCR inhibitors (HMGCRi) demonstrated a potential reduction in the risk of IgAN [OR (95%CI) = 0.0032 (-3.58 to 3.59), p = 1.60 × 10-3). Conclusions: PCSK9i markedly decreased the risk of IgAN, suggesting a potential mechanism beyond their primary effect on LDL-C. However, these inhibitors were also associated with an increased risk of NS. On the other hand, HMGCRi appears to serve as a protective factor against IgAN. Conversely, PCSK9i may pose a risk factor for NS, suggesting the necessity for cautious application and further research into their impacts on various glomerular diseases.


Assuntos
Pró-Proteína Convertase 9 , Insuficiência Renal Crônica , Humanos , Pró-Proteína Convertase 9/genética , Inibidores de PCSK9 , LDL-Colesterol/genética , Subtilisina , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla
2.
Biol Sex Differ ; 15(1): 26, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532495

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics. METHODS: We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups. RESULTS: We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals. CONCLUSIONS: We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.


The protein "proprotein convertase subtilisin/kexin type 9" (PCSK9) regulates the levels of low-density lipoprotein cholesterol (LDL-C) in blood, and thus, contributes to the risk of cardio-vascular diseases. Women tend to have higher PCSK9 plasma levels throughout their life, although the difference is smaller in patients under LDL-C lowering medication (e.g., statins). We investigated the interplay of genetics, statin-treatment and sex, using combined data from six European studies. We detected 11 genetic regions associated with PCSK9 levels, of which one was specific for women (at SLCO1B3, a statin-transporter gene), and three were specific for men (e.g., ALOX5, encoding a protein linked to chronic inflammatory diseases such as atherosclerosis). We also tested if statin use changed the genetic effect and found five genes only associated with PCSK9 levels in untreated participants. Variants in the gene encoding PCSK9 were most strongly associated and had heterogeneous effects in dependence on statin treatment and sex: On one hand, there were genetic variants with stronger effects in men than women. Those variants are also linked to sex-differential gene expression of PCSK9. On the other hand, there were also variants with treatment-depending effects, linked to protein structure and functionality of PCSK9. This indicates that the observed sexual and treatment-related effects on PCSK9 levels have a genetic basis. In addition, we compared the causal effects of PCSK9 on LDL-C levels between men and women and found a different response to statin treatment. This highlights the need for sex-sensitive dosages of lipid-lowering medication.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Masculino , Humanos , Feminino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Estudo de Associação Genômica Ampla , LDL-Colesterol/genética , Oxirredutases N-Desmetilantes , Histona Desmetilases com o Domínio Jumonji
3.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540356

RESUMO

Familial hypercholesterolemia (FH) is one of the most common autosomal codominant Mendelian diseases. The major complications of FH include tendon and cutaneous xanthomas and coronary artery disease (CAD) associated with a substantial elevation of serum low-density lipoprotein levels (LDL). Genetic counseling and genetic testing for FH is useful for its diagnosis, risk stratification, and motivation for further LDL-lowering treatments. In this study, we summarize the epidemiology of FH based on numerous genetic studies, including its pathogenic variants, genotype-phenotype correlation, prognostic factors, screening, and usefulness of genetic counseling and genetic testing. Due to the variety of treatments available for this common Mendelian disease, genetic counseling and genetic testing for FH should be implemented in daily clinical practice.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Aconselhamento Genético , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Testes Genéticos , Doença da Artéria Coronariana/genética
4.
Sci Rep ; 14(1): 6267, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491158

RESUMO

Previous studies found lipid levels, especially triglycerides (TG), are associated with acute pancreatitis, but their causalities and bi-directions were not fully examined. We determined whether abnormal levels of TG, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) are precursors and/or consequences of acute pancreatitis using bidirectional two-sample Mendelian randomization (MR) with two non-overlapping genome-wide association study (GWAS) summary statistics for lipid levels and acute pancreatitis. We found phenotypic associations that both higher TG levels and lower HDL-C levels contributed to increased risk of acute pancreatitis. Our GWAS meta-analysis of acute pancreatitis identified seven independent signals. Genetically predicted TG was positively associated with acute pancreatitis when using the variants specifically associated with TG using univariable MR [Odds ratio (OR), 95% CI 2.02, 1.22-3.31], but the reversed direction from acute pancreatitis to TG was not observed (mean difference = 0.003, SE = 0.002, P-value = 0.138). However, a bidirectional relationship of HDL-C and acute pancreatitis was observed: A 1-SD increment of genetically predicted HDL-C was associated with lower risk of acute pancreatitis (OR, 95% CI 0.84, 0.76-0.92) and genetically predisposed individuals with acute pancreatitis have, on average, 0.005 SD lower HDL-C (mean difference = - 0.005, SE = 0.002, P-value = 0.004). Our MR analysis confirms the evidence of TG as a risk factor of acute pancreatitis but not a consequence. A potential bidirectional relationship of HDL-C and acute pancreatitis occurs and raises the prospect of HDL-C modulation in the acute pancreatitis prevention and treatment.


Assuntos
Estudo de Associação Genômica Ampla , Pancreatite , Humanos , Estudo de Associação Genômica Ampla/métodos , Análise da Randomização Mendeliana/métodos , Doença Aguda , Pancreatite/genética , Polimorfismo de Nucleotídeo Único , Triglicerídeos , Fatores de Risco , LDL-Colesterol/genética , HDL-Colesterol/genética
5.
Sci Rep ; 14(1): 6785, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514665

RESUMO

Familial hypercholesterolemia (FH) is a genetic disease characterized by elevated LDL-C levels. In this study, two FH probands and 9 family members from two families from northeastern Thailand were tested for LDLR, APOB, and PCSK9 variants by whole-exome sequencing, PCR-HRM, and Sanger sequencing. In silico analysis of LDLR was performed to analyse its structure‒function relationship. A novel variant of LDLR (c.535_536delinsAT, p.Glu179Met) was detected in proband 1 and proband 2 in homozygous and heterozygous forms, respectively. A total of 6 of 9 family members were heterozygous for LDLR p.Glu179Met variant. Compared with proband 2, proband 1 had higher baseline TC and LDL-C levels and a poorer response to lipid-lowering therapy combined with a PCSK9 inhibitor. Multiple sequence alignment showed that LDLR p.Glu179Met was located in a fully conserved region. Homology modelling demonstrated that LDLR p.Glu179Met variant lost one H-bond and a negative charge. In conclusion, a novel LDLR p.Glu179Met variant was identified for the first time in Thai FH patients. This was also the first report of homozygous FH patient in Thailand. Our findings may expand the knowledge of FH-causing variants in Thai population, which is beneficial for cascade screening, genetic counselling, and FH management to prevent coronary artery disease.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Mutação , Fenótipo , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Tailândia
6.
Front Endocrinol (Lausanne) ; 15: 1272314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455653

RESUMO

Background: Low levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis. Materials and methods: Data from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers. Results: In the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P < 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers. Conclusion: This study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , HDL-Colesterol/genética , Fatores de Risco , Análise da Randomização Mendeliana , Inquéritos Nutricionais , Triglicerídeos , Estudo de Associação Genômica Ampla , LDL-Colesterol/genética
7.
Lipids Health Dis ; 23(1): 48, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365720

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS: CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS: The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS: This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Células Hep G2 , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Iodeto Peroxidase/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo
8.
Front Endocrinol (Lausanne) ; 15: 1362499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390206

RESUMO

Objective: The effect of hypolipidemic drugs on male erectile function is still controversial. This Mendelian randomization (MR) study aimed to explore the potential impact of lipid-lowering drug targets on ED. Methods: We collected seven genetic variants encoding lipid-lowering drug targets (LDLR, HMGCR, NPC1L1, PCSK9, APOB, APOC3 and LPL) from published genome-wide association study (GWAS) statistics, and performed drug target MR analysis. The risk of ED was defined as the primary outcome, sex hormone levels and other diseases as the secondary outcomes. Mediation analyses were performed to explore potential mediating factors. Results: The results showed that LDLR, LPL agonists and APOC3 inhibitors were significantly associated with a reduced risk of ED occurrence. APOB inhibitors were associated with an increased risk of ED occurrence. In terms of sex hormone levels, LDLR and LPL agonists were significantly associated with increased TT levels, and HMGCR was associated with decreased TT and BT levels significantly. In terms of male-related disease, MR results showed that LDLR agonists and PCSK9 inhibitors were significantly associated with an elevated risk of PH; HMGCR, NPC1L1 inhibitors were associated with a reduced risk of PCa; and LDLR agonists were significantly associated with a reduced risk of AS and MI; in addition, HMGCR inhibitors were associated with a reduced risk of PCa. Conclusion: After performing drug-targeted MR analysis, we found that that there was a causal relationship between lipid-lowering drug targets and ED. APOC3, APOB, LDLR and LPL may be new candidate drug targets for the treatment of ED.


Assuntos
Disfunção Erétil , Pró-Proteína Convertase 9 , Masculino , Humanos , Pró-Proteína Convertase 9/genética , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/genética , Estudo de Associação Genômica Ampla , Saúde Reprodutiva , LDL-Colesterol/genética , Hipolipemiantes , Apolipoproteínas B , Hormônios Esteroides Gonadais
9.
Curr Opin Lipidol ; 35(2): 93-100, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299384

RESUMO

PURPOSE OF REVIEW: Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. RECENT FINDINGS: The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. SUMMARY: More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.


Assuntos
Doenças Cardiovasculares , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Programas de Rastreamento
10.
JAMA Netw Open ; 7(1): e2352572, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241044

RESUMO

Importance: Apolipoprotein B (apoB), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) are associated with coronary artery disease (CAD). However, trial evidence for the association of intensive LDL-C lowering and TG lowering with mortality is less definitive. Objectives: To investigate the associations of apoB, LDL-C, and TG with CAD and mortality, both overall and by sex and age, and to characterize the shapes of these associations. Design, Setting, and Participants: This genetic association study used linear and nonlinear mendelian randomization (MR) to analyze a population-based cohort of individuals of European ancestry from the UK Biobank, which recruited participants from 2006 to 2010 with follow-up information updated until September 2021. Data analysis occurred from December 2022 to November 2023. Exposures: Genetically predicted apoB, LDL-C, and TG. Main Outcomes and Measures: The primary outcomes were CAD, all-cause mortality, and cause-specific mortality. Genetic associations with CAD were calculated using logistic regression, associations with all-cause mortality using Cox proportional hazards regression, and associations with cause-specific mortality using cause-specific Cox proportional hazards regression with censoring for other causes of mortality. Results: This study included 347 797 participants (mean [SD] age, 57.2 [8.0] years; 188 330 female [54.1%]). There were 23 818 people who developed CAD and 23 848 people who died. Genetically predicted apoB was positively associated with risk of CAD (odds ratio [OR], 1.65 per SD increase; 95% CI 1.57-1.73), all-cause mortality (hazard ratio [HR], 1.11; 95% CI, 1.06-1.16), and cardiovascular mortality (HR, 1.36; 95% CI, 1.24-1.50), with some evidence for larger associations in male participants than female participants. Findings were similar for LDL-C. Genetically predicted TG was positively associated with CAD (OR, 1.60; 95% CI 1.52-1.69), all-cause mortality (HR, 1.08; 95% CI, 1.03-1.13), and cardiovascular mortality (HR, 1.21; 95% CI, 1.09-1.34); however, sensitivity analyses suggested evidence of pleiotropy. The association of genetically predicted TG with CAD persisted but it was no longer associated with mortality outcomes after controlling for apoB. Nonlinear MR suggested that all these associations were monotonically increasing across the whole observed distribution of each lipid trait, with no diminution at low lipid levels. Such patterns were observed irrespective of sex or age. Conclusions and relevance: In this genetic association study, apoB (or, equivalently, LDL-C) was associated with increased CAD risk, all-cause mortality, and cardiovascular mortality, all in a dose-dependent way. TG may increase CAD risk independent of apoB, although the possible presence of pleiotropy is a limitation. These insights highlight the importance of apoB (or, equivalently, LDL-C) lowering for reducing cardiovascular morbidity and mortality across its whole distribution.


Assuntos
Doença da Artéria Coronariana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/genética , LDL-Colesterol/genética , Fatores de Risco , Apolipoproteínas B , Triglicerídeos
11.
Nutr Cancer ; 76(2): 175-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166549

RESUMO

Observational and Mendelian randomization (MR) studies have established links between dyslipidemia and select cancer susceptibilities. However, there is a lack of comprehensive exploration of causal relationships spanning diverse cancer types. Here, we conducted a two-sample MR analysis to elucidate the causative connections between 9 blood lipid metabolic profiles (namely, adiponectin, leptin, lipoprotein A, apolipoprotein A1, apolipoprotein B, cholesterol, triglycerides, LDL-cholesterol, and HDL-cholesterol) and 21 site-specific cancer risks. Our findings reveal genetically predicted adiponectin levels to be associated with a reduced ovarian cancer risk, while genetically determined leptin increases bladder cancer risk but decreases prostate cancer risk. Lipoprotein A elevates risk of prostate cancer while diminishing risk of endometrial cancer, while apolipoprotein A1 heightens risks of breast and cervical cancers. Furthermore, elevated levels of cholesterol are positively correlated with kidney cancer, and triglycerides demonstrate a positive association with non-melanoma skin cancer but a negative association with breast cancer. Protective effects of genetically predicted LDL-cholesterol on endometrial cancer and adverse effects of HDL-cholesterol on breast cancer are also observed. Our study conclusively establishes that blood lipid metabolic profiles exert causal effects on cancer susceptibility, providing more robust evidence for cancer prevention and prompting contemplation regarding the future health of the human populace.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias da Próstata , Masculino , Humanos , Apolipoproteína A-I , Leptina , Adiponectina , Análise da Randomização Mendeliana , Lipídeos , Colesterol , Triglicerídeos , LDL-Colesterol/genética , HDL-Colesterol , Lipoproteína(a) , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/genética , Neoplasias da Próstata/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
12.
Sci Rep ; 14(1): 1338, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228698

RESUMO

Although uric acid-lowering agents such as xanthine oxidase inhibitors have potential cardioprotective effects, studies on their use in preventing cardiovascular diseases are lacking. We investigated the genetically proxied effects of reducing uric acid on ischemic cardiovascular diseases in a lipid-level-stratified population. We performed drug-target Mendelian randomization (MR) analyses using UK Biobank data to select genetic instruments within a uric acid-lowering gene, xanthine dehydrogenase (XDH), and construct genetic scores. For nonlinear MR analyses, individuals were stratified by lipid level. Outcomes included acute myocardial infarction (AMI), ischemic heart disease, cerebral infarction, transient cerebral ischemic attack, overall ischemic disease, and gout. We included 474,983 non-gout individuals with XDH-associated single-nucleotide polymorphisms. The XDH-variant-induced uric acid reduction was associated with reduced risk of gout (odds ratio [OR], 0.85; 95% confidence interval [CI], 0.78-0.93; P < 0.001), cerebral infarction (OR, 0.86; 95% CI, 0.75-0.98; P = 0.023), AMI (OR, 0.79; 95% CI, 0.66-0.94; P = 0.010) in individuals with triglycerides ≥ 188.00 mg/dL, and cerebral infarction in individuals with low-density lipoprotein cholesterol (LDL-C) ≤ 112.30 mg/dL (OR, 0.76; 95% CI, 0.61-0.96; P = 0.020) or LDL-C of 136.90-157.40 mg/dL (OR, 0.67; 95% CI, 0.49-0.92; P = 0.012). XDH-variant-induced uric acid reduction lowers the risk of gout, AMI for individuals with high triglycerides, and cerebral infarction except for individuals with high LDL-C, highlighting the potential heterogeneity in the protective effects of xanthine oxidase inhibitors for treating AMI and cerebral infarction depending on the lipid profiles.


Assuntos
Gota , Infarto do Miocárdio , Humanos , Ácido Úrico , Xantina Oxidase/genética , Análise da Randomização Mendeliana , LDL-Colesterol/genética , Gota/tratamento farmacológico , Gota/genética , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/genética , Triglicerídeos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
13.
JAMA Cardiol ; 9(3): 263-271, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294787

RESUMO

Importance: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures: LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença da Artéria Coronariana , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Adulto Jovem , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Hipercolesterolemia/complicações , LDL-Colesterol/genética , Doenças Cardiovasculares/prevenção & controle , Estudos de Coortes , Fatores de Risco , Hiperlipoproteinemia Tipo II/diagnóstico , Doença da Artéria Coronariana/complicações , Aterosclerose/complicações , Fatores de Risco de Doenças Cardíacas
14.
Circulation ; 149(5): 343-353, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37860863

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by severely elevated low-density lipoprotein cholesterol (LDL-C) levels due to profoundly defective LDL receptor (LDLR) function. Given that severely elevated LDL-C starts in utero, atherosclerosis often presents during childhood or adolescence, creating a largely unmet need for aggressive LDLR-independent lipid-lowering therapies in young patients with HoFH. Here we present the first evaluation of the efficacy and safety of evinacumab, a novel LDLR-independent lipid-lowering therapy, in pediatric patients with HoFH from parts A and B of a 3-part study. METHODS: The phase 3, part B, open-label study treated 14 patients 5 to 11 years of age with genetically proven HoFH (true homozygotes and compound heterozygotes) with LDL-C >130 mg/dL, despite optimized lipid-lowering therapy (including LDLR-independent apheresis and lomitapide), with intravenous evinacumab 15 mg/kg every 4 weeks. RESULTS: Evinacumab treatment rapidly and durably (through week 24) decreased LDL-C with profound reduction in the first week, with a mean (SE) LDL-C reduction of -48.3% (10.4%) from baseline to week 24. ApoB (mean [SE], -41.3% [9.0%]), non-high-density lipoprotein cholesterol (-48.9% [9.8%]), and total cholesterol (-49.1% [8.1%]) were similarly decreased. Treatment-emergent adverse events were reported in 10 (71.4%) patients; however, only 2 (14.3%) reported events that were considered to be treatment-related (nausea and abdominal pain). One serious treatment-emergent adverse event of tonsillitis occurred (n=1), but this was not considered treatment-related. CONCLUSIONS: Evinacumab constitutes a new treatment for pediatric patients with HoFH and inadequately controlled LDL-C despite optimized lipid-lowering therapy, lowering LDL-C levels by nearly half in these extremely high-risk and difficult-to-treat individuals. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04233918.


Assuntos
Anticorpos Monoclonais , Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Hiperlipoproteinemia Tipo II , Adolescente , Humanos , Criança , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Anticolesterolemiantes/efeitos adversos , Homozigoto
15.
Eur J Hum Genet ; 32(2): 215-223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903942

RESUMO

Perturbation of lipid homoeostasis is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide. We aimed to identify genetic variants affecting lipid levels, and thereby risk of CVD, in Greenlanders. Genome-wide association studies (GWAS) of six blood lipids, triglycerides, LDL-cholesterol, HDL-cholesterol, total cholesterol, as well as apolipoproteins A1 and B, were performed in up to 4473 Greenlanders. For genome-wide significant variants, we also tested for associations with additional traits, including CVD events. We identified 11 genome-wide significant loci associated with lipid traits. Most of these loci were already known in Europeans, however, we found a potential causal variant near PCSK9 (rs12117661), which was independent of the known PCSK9 loss-of-function variant (rs11491147). rs12117661 was associated with lower LDL-cholesterol (ßSD(SE) = -0.22 (0.03), p = 6.5 × 10-12) and total cholesterol (-0.17 (0.03), p = 1.1 × 10-8) in the Greenlandic study population. Similar associations were observed in Europeans from the UK Biobank, where the variant was also associated with a lower risk of CVD outcomes. Moreover, rs12117661 was a top eQTL for PCSK9 across tissues in European data from the GTEx portal, and was located in a predicted regulatory element, supporting a possible causal impact on PCSK9 expression. Combined, the 11 GWAS signals explained up to 16.3% of the variance of the lipid traits. This suggests that the genetic architecture of lipid levels in Greenlanders is different from Europeans, with fewer variants explaining the variance.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Humanos , Pró-Proteína Convertase 9/genética , Groenlândia , Triglicerídeos/genética , Lipídeos/genética , HDL-Colesterol , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Doenças Cardiovasculares/genética , Polimorfismo de Nucleotídeo Único
16.
Clin Genet ; 105(3): 308-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018368

RESUMO

Familial hypercholesterolemia (FH) is defined as a monogenic disease, characterized by elevated low-density lipoprotein cholesterol (LDL-C) levels. FH remains underdiagnosed and undertreated in Chinese. We whole-genome sequenced 6820 newborns from Qingdao of China to investigate the FH-related gene (LDLR, APOB, PCSK9) mutation types, carrier ratio and genotype-phenotype correlation. In this study, the prevalence of FH in Qingdao of China was 0.47% (95% CI: 0.32%-0.66%). The plasma lipid levels of FH-related gene mutation carriers begin to increase as early as infant. T-CHO and LDL-C of FH infants was higher by 48.1% (p < 0.001) and 42.9% (p < 0.001) relative to non-FH infants. A total of 22 FH infants and their parent participate in further studies. The results indicated that FH infant parent noncarriers have the normal plasma lipid level, while T-CHO and LDL-C increased in FH infants and FH infant parent carriers, but no difference between the groups. This highlights the importance of genetic factors. In conclusion, the spectrum of FH-causing mutations in the newborns of Qingdao, China was described for the first time. These data can serve as a considerable dataset for next-generation sequencing analysis of the Chinese population with FH and potentially helping reform regional policies for early detection and prevention of FH.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Recém-Nascido , Pró-Proteína Convertase 9/genética , LDL-Colesterol/genética , Receptores de LDL/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Mutação
17.
J Am Assoc Nurse Pract ; 36(2): 136-142, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624754

RESUMO

ABSTRACT: Familial hypercholesterolemia (FH) is one of the most common genetic conditions. Affected individuals are unable to metabolize cholesterol due to inherited changes in the low-density lipoprotein (LDL) receptor, which impairs the ability to metabolize cholesterol, resulting in extremely high levels of cholesterol that leads to premature coronary artery disease. Autosomal dominant FH is caused by variants in several genes, which may present as heterozygous FH (less severe) or homozygous FH (more severe). Clinical diagnosis may be more likely when there is a family history of two or more first-degree relatives with total and LDL-cholesterol (LDL-C) level elevations, a child is identified, or the affected individual or close relatives have tendon xanthomas and/or progressive atherosclerosis. This article provides an overview of autosomal dominant FH, including disease prevalence, clinical diagnostic criteria, genetic variants, diagnostic testing, pathognomonic findings, and treatment options. It also shares a brief case, which highlights challenges associated with genetic test interpretation and the importance of including experienced providers in the diagnosis and treatment of this underdiagnosed and often untreated or undertreated genetic condition.


Assuntos
Hiperlipoproteinemia Tipo II , Criança , Humanos , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , LDL-Colesterol/uso terapêutico , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Colesterol/uso terapêutico , Testes Genéticos
18.
J Gene Med ; 26(1): e3578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37593849

RESUMO

BACKGROUND: Acne vulgaris (AV) is a chronic, multifactorial inflammatory disease of the pilosebaceous unit brought on by hormonal imbalance, excessive sebum production, follicular hyperkeratinization, inflammation and Cutibacterium acne. Acne patients are characterized by alteration of the lipid profile. Apolipoprotein B gene (ApoB) plays an essential role in lipoprotein biosynthesis and multiple single-nucleotide polymorphisms (SNPs) in ApoB are associated with dyslipidemia. AIM: The aim of this study was to estimate the alteration of lipid profiles in AV, determine the genetic association with lipid profile alteration by studying the ApoB gene polymorphisms, and to identify the exact haplotypes associated with acne and lipid profile alteration. SUBJECTS AND METHODS: In a case-control study consisting of 63 non-obese acne patients and 43 healthy controls, all participants underwent biochemical, anthropological assessments, and genetic analysis for ApoB polymorphisms. RESULT: Our results indicate that serum ApoB and the lipid profile were higher in acne patients compared with healthy subject. The most common haplotypes in acne patients were rs562338 A/rs17240441 I/c.12669 A/rs1042034 G, whereas the most common haplotypes in healthy subjects were rs562338 G/rs17240441 D/c.12669 A/rs1042034 G. Patients with mild acne had higher serum ApoB levels p = 0.005. Also, the low-density lipoprotein cholesterol (LDL-C) level was higher in mild acne compared with other acne groups, with a highly significant variation of p ≤ 0.001. CONCLUSION: We found a significant variation between the acne group and healthy controls in serum ApoB, triglycerides, total cholesterol and LDL-C. The most common haplotypes in acne patients are rs562338 A/, rs17240441 I/, c.12669 A/ and rs1042034 G, and there is a linkage disequilibrium between the four selected SNPs.


Assuntos
Acne Vulgar , Hiperlipidemias , Humanos , Acne Vulgar/genética , Apolipoproteínas B/genética , Estudos de Casos e Controles , LDL-Colesterol/genética , Frequência do Gene , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
19.
Calcif Tissue Int ; 114(2): 147-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071623

RESUMO

BACKGROUND: Observational studies have shown a causal association between dyslipidemia and osteoporosis, but the genetic causation and complete mechanism of which are uncertain. The disadvantage of previous observational studies is that they are susceptible to confounding factors and bias, that makes it difficult to infer a causal link between those two diseases. Abnormal epigenetic modifications, represented by DNA methylation, are important causes of many diseases. However, there are no studies showing a bridging role for methylation modifications in blood lipid metabolism and osteoporosis. METHODS: SNPs for lipid profile (Blood VLDL cholesterol (VLDL-C), blood LDL cholesterol (LDL-C), blood HDL cholesterol (HDL-C), blood triglycerides (TG), diagnosed pure hypercholesterolaemia, blood apolipoprotein B (Apo B), blood apolipoprotein A1(Apo A1)), and bone mineral density (BMD) in different body parts (Heel BMD, lumbar BMD, whole-body BMD, femoral neck BMD) were obtained from large meta-analyses of genome-wide association studies as instrumental variables for two-sample Mendelian randomization. Assessment of the genetic effects of lipid profile-associated methylation sites and bone mineral density was carried out using the summary-data-based Mendelian randomization (SMR) method. RESULTS: Two-sample Mendelian randomization showed that there was a negative causal association between hypercholesterolaemia and heel BMD (p = 0.0103, OR = 0.4590), and total body BMD (p = 0.0002, OR = 0.2826). LDL-C had a negative causal association with heel BMD (p = 8.68E-05, OR = 0.9586). VLDL-C had a negative causal association with heel BMD (p = 0.035, OR = 0.9484), lumbar BMD (p = 0.0316, OR = 0.9356), and total body BMD (p = 0.0035, OR = 0.9484). HDL-C had a negative causal association with heel BMD (p = 1.25E-05, OR = 0.9548), lumbar BMD (p = 0.0129, OR = 0.9358), and total body BMD (p = 0.0399, OR = 0.9644). Apo B had a negative causal association with heel BMD (p = 0.0001, OR = 0.9647). Apo A1 had a negative causal association with heel BMD (p = 0.0132, OR = 0.9746) and lumbar BMD (p = 0.0058, OR = 0.9261). The p-values of all positive results corrected by the FDR method remained significant and sensitivity analysis showed that there was no horizontal pleiotropy in the results despite the heterogeneity in some results. SMR identified 3 methylation sites associated with lipid profiles in the presence of genetic effects on BMD: cg15707428(GREB1), cg16000331(SREBF2), cg14364472(NOTCH1). CONCLUSION: Our study provides insights into the potential causal links and co-pathogenesis between dyslipidemia and osteoporosis. The genetic effects of dyslipidaemia on osteoporosis may be related to certain aberrant methylation genetic modifications.


Assuntos
Hipercolesterolemia , Osteoporose , Humanos , Apolipoproteína A-I/genética , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Análise da Randomização Mendeliana , Hipercolesterolemia/genética , Multiômica , LDL-Colesterol/genética , Osteoporose/genética , Densidade Óssea/genética , Metilação de DNA , Lipídeos , Apolipoproteínas B/genética , Polimorfismo de Nucleotídeo Único
20.
Hum Mol Genet ; 33(7): 583-593, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142287

RESUMO

To control genetic background and early life milieu in genome-wide DNA methylation analysis for blood lipids, we recruited Chinese discordant monozygotic twins to explore the relationships between DNA methylations and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). 132 monozygotic (MZ) twins were included with discordant lipid levels and completed data. A linear mixed model was conducted in Epigenome-wide association study (EWAS). Generalized estimating equation model was for gene expression analysis. We conducted Weighted correlation network analysis (WGCNA) to build co-methylated interconnected network. Additional Qingdao citizens were recruited for validation. Inference about Causation through Examination of Familial Confounding (ICE FALCON) was used to infer the possible direction of these relationships. A total of 476 top CpGs reached suggestively significant level (P < 10-4), of which, 192 CpGs were significantly associated with TG (FDR < 0.05). They were used to build interconnected network and highlight crucial genes from WGCNA. Finally, four CpGs in GATA4 were validated as risk factors for TC; six CpGs at ITFG2-AS1 were negatively associated with TG; two CpGs in PLXND1 played protective roles in HDL-C. ICE FALCON indicated abnormal TC was regarded as the consequence of DNA methylation in CpGs at GATA4, rather than vice versa. Four CpGs in ITFG2-AS1 were both causes and consequences of modified TG levels. Our results indicated that DNA methylation levels of 12 CpGs in GATA4, ITFG2-AS1, and PLXND1 were relevant to TC, TG, and HDL-C, respectively, which might provide new epigenetic insights into potential clinical treatment of dyslipidemia.


Assuntos
Epigênese Genética , Gêmeos Monozigóticos , Humanos , Epigênese Genética/genética , Gêmeos Monozigóticos/genética , Metilação de DNA/genética , Lipídeos/genética , Triglicerídeos/genética , LDL-Colesterol/genética , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...